Search results for "p-harmonic functions"

showing 4 items of 4 documents

Uniform measure density condition and game regularity for tug-of-war games

2018

We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for the associated stopping times and density estimates for the sum of independent and identically distributed random vectors. peerReviewed

Statistics and ProbabilityIndependent and identically distributed random variablesComputer Science::Computer Science and Game Theorygame regularitydensity estimate for the sum of i.i.d. random vectorsTug of war01 natural sciencesMeasure (mathematics)$p$-regularityMathematics - Analysis of PDEsFOS: MathematicsApplied mathematicspeliteoriastochastic games0101 mathematics91A15 60G50 35J92Mathematicsp-harmonic functionsstokastiset prosessit$p$-harmonic functionsosittaisdifferentiaaliyhtälöthitting probability010102 general mathematicsStochastic gametug-of-war gamesProbability (math.PR)uniform measure density condition010101 applied mathematicsNoiseuniform distribution in a ballMathematics - ProbabilityAnalysis of PDEs (math.AP)
researchProduct

Nonlinear potential theory on metric spaces

2008

metric spacesmatematiikkamatematikbalayagep-harmonic functions
researchProduct

Conformality and $Q$-harmonicity in sub-Riemannian manifolds

2016

We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsWork (thermodynamics)morphism propertyGeneral Mathematicsconformal transformationBoundary (topology)Conformal map01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric GeometryLiouville TheoremRegularity for p-harmonic functionSubelliptic PDE0103 physical sciencesFOS: MathematicsMathematics (all)0101 mathematicspopp measureMathematicsosittaisdifferentiaaliyhtälötsubelliptic PDESmoothnessQuasi-conformal mapApplied MathematicsHarmonic coordinates; Liouville Theorem; Quasi-conformal maps; Regularity for p-harmonic functions; Sub-Riemannian geometry; Subelliptic PDE; Mathematics (all); Applied Mathematicsta111Harmonic coordinate010102 general mathematics53C17 35H20 58C25Metric Geometry (math.MG)16. Peace & justiceregularity for p-harmonic functionsSub-Riemannian geometrysub-Riemannian geometryDifferential Geometry (math.DG)quasi-conformal mapsRegularity for p-harmonic functionsharmonic coordinates010307 mathematical physicsMathematics::Differential GeometrymonistotLiouville theoremAnalysis of PDEs (math.AP)
researchProduct

Superconductive and insulating inclusions for linear and non-linear conductivity equations

2015

We detect an inclusion with infinite conductivity from boundary measurements represented by the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the probe method. We use the enclosure method to prove partial results when the underlying equation is the quasilinear $p$-Laplace equation. Further, we rigorously treat the forward problem for the partial differential equation $\operatorname{div}(\sigma\lvert\nabla u\rvert^{p-2}\nabla u)=0$ where the measurable conductivity $\sigma\colon\Omega\to[0,\infty]$ is zero or infinity in large sets and $1<p<\infty$.

Pure mathematicsControl and Optimizationmedia_common.quotation_subjectMathematics::Analysis of PDEsBoundary (topology)probe methodConductivity01 natural sciencesMathematics - Analysis of PDEs35R30 35J92 (Primary) 35H99 (Secondary)FOS: MathematicsDiscrete Mathematics and CombinatoricsPharmacology (medical)Nabla symbol0101 mathematicsmedia_commonp-harmonic functionsLaplace's equationPhysicsPartial differential equationCalderón problemComputer Science::Information Retrieval010102 general mathematicsta111Zero (complex analysis)Infinity3. Good health010101 applied mathematicsNonlinear systeminclusionModeling and Simulationinverse boundary value problemAnalysisinkluusioAnalysis of PDEs (math.AP)enclosure method
researchProduct